6,729 research outputs found

    D-string on near horizon geometries and infinite conformal symmetry

    Get PDF
    We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or loop like) algebra. Near horizon (AdS) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2d interacting field theories with infinite conformal symmetry.Comment: 5 pages, revtex, no figures; symmetry transformations for BI action added, coupling of D-string to RR 2-form in D1-D5 background corrected; final version, to appear in Phys. Rev. Let

    NAM-SCA: A Nonhydrostatic anelastic model with segmentally constant approximations

    No full text
    International audienceAn atmospheric convective system may be modeled as an ensemble of discrete plume elements. A representation of decomposited plumes provides the basis for mass-flux convective parameterization. A dry version of such a prototype model is constructed in a two-dimensional horizontally periodic domain. Each discrete plume element is approximated by a horizontally homogeneous segment such that the whole system is given by segmentally constant approximations (SCA) in the horizontal direction for each vertical level in a nonhydrostatic anelastic model (NAM). The distribution of constant segments is highly inhomogeneous in space and evolves with time in a highly adaptive manner. The basic modeling strategy from a physical point of view is to activate new segments vertically upward with time when a convective plume is growing and to deactivate segments when a plume event is over. The difference in physical values crossing segment interfaces is used as a criterion for numerically implementing this strategy. Whenever a large difference is found, the given interface is stretched vertically by subdividing an existing segment into two. In turn, when a segment interface difference is found below the threshold, the given interface is removed, thereby merging the two segments into one. This nonhydrostatic anelastic model with segmentally constant approximations (NAM-SCA) is tested on an idealized atmospheric convective boundary layer. It successfully simulates the evolution of convective plumes with a relatively limited number of segments (i.e., high compression) and with a much scarcer distribution of segments over nonplume environments (i.e., extremely inhomogeneous distribution of segments). Overall, this method compresses the size of the model up to 5 times compared to a standard NAM with homogeneous grid distribution without substantially sacrificing numerical accuracy. © 2010 American Meteorological Society

    A class of anisotropic (Finsler-) space-time geometries

    Get PDF
    A particular Finsler-metric proposed in [1,2] and describing a geometry with a preferred null direction is characterized here as belonging to a subclass contained in a larger class of Finsler-metrics with one or more preferred directions (null, space- or timelike). The metrics are classified according to their group of isometries. These turn out to be isomorphic to subgroups of the Poincar\'e (Lorentz-) group complemented by the generator of a dilatation. The arising Finsler geometries may be used for the construction of relativistic theories testing the isotropy of space. It is shown that the Finsler space with the only preferred null direction is the anisotropic space closest to isotropic Minkowski-space of the full class discussed.Comment: 12 pages, latex, no figure

    Evolutionary Dynamics of Multigene Families in Triportheus (Characiformes, Triportheidae): A Transposon Mediated Mechanism?

    Get PDF
    Triportheus (Characiformes, Triportheidae) is a freshwater fish genus with 18 valid species. These fishes are widely distributed in the major river drainages of South America, having commercial importance in the fishing market, mainly in the Amazon basin. This genus has diverged recently in a complex process of speciation carried out in different river basins. The use of repetitive sequences is suitable to trace the genomic reorganizations occured along the speciation process. In this work, the 5S rDNA multigene family has been characterized at molecular and phylogenetic level. The results showed that other multigene family has been found within the non-transcribed spacer (NTS): the U1 snRNA gene. Double-FISH with 5S and U1 probes were also performed, confirming the close linkage between these two multigene families. Moreover, evidences of different transposable elements (TE) were detected within the spacer, thus suggesting a transposon-mediated mechanism of 5S-U1 evolutionary pathway in this genus. Phylogenetic analysis demonstrated a species-specific grouping, except for Triportheus pantanensis, Triportheus aff. rotundatus and Triportheus trifurcatus. The evolutionary model of the 5S rDNA in Triportheus species has been discussed. In addition, the results suggest new clues for the speciation and evolutionary trend in these species, which could be suitable to use in other Characiformes species

    Navigation in Curved Space-Time

    Full text link
    A covariant and invariant theory of navigation in curved space-time with respect to electromagnetic beacons is written in terms of J. L. Synge's two-point invariant world function. Explicit equations are given for navigation in space-time in the vicinity of the Earth in Schwarzschild coordinates and in rotating coordinates. The restricted problem of determining an observer's coordinate time when their spatial position is known is also considered

    Evolution of the discrepancy between a universe and its model

    Get PDF
    We study a fundamental issue in cosmology: Whether we can rely on a cosmological model to understand the real history of the Universe. This fundamental, still unresolved issue is often called the ``model-fitting problem (or averaging problem) in cosmology''. Here we analyze this issue with the help of the spectral scheme prepared in the preceding studies. Choosing two specific spatial geometries that are very close to each other, we investigate explicitly the time evolution of the spectral distance between them; as two spatial geometries, we choose a flat 3-torus and a perturbed geometry around it, mimicking the relation of a ``model universe'' and the ``real Universe''. Then we estimate the spectral distance between them and investigate its time evolution explicitly. This analysis is done efficiently by making use of the basic results of the standard linear structure-formation theory. We observe that, as far as the linear perturbation of geometry is valid, the spectral distance does not increase with time prominently,rather it shows the tendency to decrease. This result is compatible with the general belief in the reliability of describing the Universe by means of a model, and calls for more detailed studies along the same line including the investigation of wider class of spacetimes and the analysis beyond the linear regime.Comment: To be published in Classical and Quantum Gravit

    Weakly Z symmetric manifolds

    Get PDF
    We introduce a new kind of Riemannian manifold that includes weakly-, pseudo- and pseudo projective- Ricci symmetric manifolds. The manifold is defined through a generalization of the so called Z tensor; it is named "weakly Z symmetric" and denoted by (WZS)_n. If the Z tensor is singular we give conditions for the existence of a proper concircular vector. For non singular Z tensor, we study the closedness property of the associated covectors and give sufficient conditions for the existence of a proper concircular vector in the conformally harmonic case, and the general form of the Ricci tensor. For conformally flat (WZS)_n manifolds, we derive the local form of the metric tensor.Comment: 13 page

    Lifetimes and Sizes from Two-Particle Correlation Functions

    Get PDF
    We discuss the Yano-Koonin-Podgoretskii (YKP) parametrization of the two-particle correlation function for azimuthally symmetric expanding sources. We derive model-independent expressions for the YKP fit parameters and discuss their physical interpretation. We use them to evaluate the YKP fit parameters and their momentum dependence for a simple model for the emission function and propose new strategies for extracting the source lifetime. Longitudinal expansion of the source can be seen directly in the rapidity dependence of the Yano-Koonin velocity.Comment: 15 pages REVTEX, 2 figures included, submitted to Phys. Lett. B, Expanded discussion of disadvantages of standard HBT fit and of Fig.

    A color flow tract in ultrasound-guided random renal core biopsy predicts complications

    Get PDF
    OBJECTIVES: To determine patient and procedural risk factors for major complications in ultrasound (US)-guided random renal core biopsy. METHODS: Random renal biopsies performed by radiologists in the US department at a single institution between 2014 and 2018 were retrospectively reviewed. The patient\u27s age, sex, race, and estimated glomerular filtration rate (eGFR) were recorded. The biopsy approach, needle gauge, length of cores, number of throws, and presence of a color flow tract were recorded. Outcome data included minor and major complications. Associations between variables were tested with χ RESULTS: A total of 231 biopsies (167 native and 64 allografts) were reviewed. There was no significant difference in the sex, age, race, or eGFR between native and allograft groups. The overall rate for any complication was 18.2%, with a 4.3% rate of major complications, which was significantly greater in native compared to allograft biopsies (6% versus 0%; P = .045). A risk analysis in native biopsies only showed that major complications were significantly associated with a low eGFR such that patients with stage 4 or 5 kidney disease had higher odds of complications (odds ratio [95% confidence interval]: stage 4, 9.405 [1.995-44.338]; P = .0393; stage 5, 10.749 [2.218-52.080]; P = .0203) than patients with normal function (eGFR \u3e60 mL/min). The presence of a color flow tract portended a 10.7 times greater risk of having any complication (95% confidence interval, 4.595-24.994; P \u3c .001). Other procedural factors were not significantly associated with complications. CONCLUSIONS: There is an increased risk of major complications in US-guided random native kidney biopsy in patients with a low eGFR (\u3c30 mL/min) and a patent color flow tract in the immediate postbiopsy setting
    • …
    corecore